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Abstract
The paper reports molecular dynamics (MD) simulations on two-dimensional,
strongly-coulped Yukawa liquids. An effective coupling coefficient �∗ for the
liquid phase is identified; thermodynamic properties such as internal energy,
pressure and compressibility, as well as longitudinal and transverse mode
dispersions are analysed.

PACS numbers: 52.27.Gr, 05.20.−y, 73.21.−b

1. Introduction

The Yukawa (screened Coulomb) potential φ(r)= Q2

r
exp(−κr) is a widely used

approximation to describe the interaction of particles in a variety of physical systems, e.g. dusty
plasmas [1] and charged colloids [2]. Many-particle systems with Yukawa interaction can be
fully characterized by two dimensionless parameters: (i) the coupling parameter � = βQ2/a

(where Q is the charge of the particles, a is the Wigner–Seitz radius and β = 1/kBT is the
inverse temperature), and (ii) the screening parameter κ . Besides three-dimensional (3D)
systems, two-dimensional (2D) configurations also appear in a variety of physical systems.
As examples, layers of dust particles formed in low pressure gas discharges may be mentioned.

The purpose of this work is to give an overview about the static and dynamic properties of
strongly coupled 2D Yukawa liquids near thermal equilibrium conditions. The properties of
the system are analysed with the aid of molecular dynamics simulations based on the PPPM
(particle–particle particle–mesh) algorithm [4]; for more details of the implementation see
[5]. The primary output data of our simulations are the pair correlation functions (PCF-s)
g(r), which are used as input data for the calculation of the correlational energy, pressure
and compressibility and the static structure function S(k). In addition, we generate the
bond-angular order parameter G� (see (4)). The solid-to-liquid transition is studied through
monitoring the temperature dependence of the latter.

0305-4470/06/174485+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4485

http://dx.doi.org/10.1088/0305-4470/39/17/S27
mailto:hartmann@sunserv.kfki.hu
http://stacks.iop.org/JPhysA/39/4485


4486 P Hartmann et al

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Γ = 120, κ = 0
 Γ = 120, κ = 1
 Γ = 120, κ = 2
 Γ = 120, κ = 3

 

g
 (

 r 
 )

r 
0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Γ = 120,   κ = 0
 Γ = 160,   κ = 1
 Γ = 360,   κ = 2
 Γ = 1050, κ = 3

g
 (

 r 
 )

r 

(b)(a)

Figure 1. Pair correlation functions of the 2D Yukawa liquid for (a) � = 120 and different values
of κ̄ , and (b) for (�, κ̄) pairs corresponding to a constant �∗ = 120.

Our simulations also provide information about the spectra of the longitudinal and
transverse current fluctuations. These spectra are obtained through the Fourier transform
of microscopic quantities [7]

L(k, ω) =
∣∣∣∣F

{
k

∑
j

vjx exp(ikxj )

}∣∣∣∣
2

, T (k, ω) =
∣∣∣∣F

{
k

∑
j

vjy exp(ikxj )

}∣∣∣∣
2

, (1)

where the index j runs over all particles.
The spectra defined by (1) serve as the basis for the analysis of the collective excitations

of the system. We have reported detailed calculations on this topic in [6].
In the following, the simulation results are given with the length scale normalized to the

2D Wigner–Seitz radius a = (πn)−1/2 (where n is the areal density), i.e. r̄ = r/a, κ̄ = κa

and k̄ = ka for the wavenumber.

2. Static properties

The issue of scaling, i.e. whether only some combination of the � and κ̄ parameters rather than
both of these parameters independently, or, alternatively, the ratio of the temperature to the
melting temperature govern the behaviour of Yukawa systems has been addressed by several
studies: the universal scaling of structural properties and transport parameters has continued
to receive attention for many years [8]. Here we establish a novel criterion for �∗ effective
coupling parameter that relies on associating a constant amplitude of the first peak of the PCF
[g(r)] with a constant �∗ value.

The pair correlation functions of the 2D Yukawa liquid are displayed in figure 1(a) for
� = 120 and for a series of κ̄ values. It can be seen that the range of the rather pronounced
order, characteristic for κ̄ = 0 rapidly diminishes with increasing κ̄ . The amplitude of the
first peak of the PCF can, however, be re-established if � is also increased together with κ̄ . In
fact, as figure 1(b) shows, within the range of r̄ displayed not only the amplitude of the first
peak, but the g(r̄) functions in their entireties are nearly the same for fixed �∗ values. (This
scaling, however, does not apply to the tail of g(r), cf [5].)

Figure 2(a) shows the contours on the �–κ̄ plane which belong to constant effective
coupling values �∗ = 120, 40 and 10. It can be seen that these lines have approximately the
same shape; thus they can be scaled to a single universal line, as shown in figure 2(b), which
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Figure 2. (a) Constant effective coupling (�∗) lines on the �–κ̄ plane. (b) Dependence of the
ratio �/�∗ on κ̄ . The symbols are data taken from (a), while the solid line is a fit according to (2)
and (3). The dashed line is the universality relation of Vaulina et al [9].

displays the dependence of the ratio �/�∗ on κ̄ for the chosen values of �∗. Our aim now is
to find an f (κ̄) function that allows us to partition �∗(�, κ̄) as

�∗ = �f (κ̄). (2)

At high values of �∗ the ratio �/�∗ depends only on κ̄ , the partitioning given in (2) is indeed
possible, and f (κ̄) can be fitted with the aid of the formula

f (κ̄) = 1 + f2κ̄
2 + f3κ̄

3 + f4κ̄
4, with

f2 = −0.388, f3 = 0.138, f4 = −0.0138.
(3)

The universality scaling relation introduced by Vaulina and coworkers [8, 9] for 3D dusty
plasmas based on transport phenomena (where f (κ̄) = (1 +

√
πκ̄ + π/2κ̄2) exp(−√

πκ̄))
shows a remarkably good agreement with our present results for 2D Yukawa systems based
on the PCF first peak amplitude.

The bond-angular order parameter G� for a system with hexagonal symmetry [10, 11]
has the form

G� = 1

N

∣∣∣∣∣
N∑

l=1

1

6

6∑
m=1

exp(i6�l,m)

∣∣∣∣∣
2

, (4)

where the subscript l runs over all particles of the system, and m runs over the neighbours of
the lth particle, respectively; �l,m is the angle between a fixed (e.g. x) direction and the vector
connecting the lth and mth particles. The solid-to-liquid transition can be identified by a drop
of the bond-angular order parameter below the empirical value G�

∼= 0.45 [11–13].
The melting ‘experiment’ of the 2D Yukawa layer is illustrated in figure 3(a). After

proper cooling of the system below freezing, the temperature is slowly increased and the
bond-angular order parameter G� is calculated according to (4) in each time step. With the
increasing temperature, first we observe a slow decay of G� (from an initial value close to
1.0, indicating nearly perfect hexagonal order); when the temperature reaches a critical value,
G� is seen to suddenly drop to ≈0, indicating an abrupt loss of the long-range orientational
order in the system. We identify this event as the solid-to-liquid transition, taking place at
� = �m. The temperature control of the system is realized by the Nosé–Hoover algorithm
(see e.g. [14]).

The �m–κ̄ phase boundary, obtained from simulations illustrated above, is plotted in
figure 3(b). At κ̄ = 0 the simulations closely reproduce the value �Coulomb

m
∼= 137 for the 2D

one-component plasma (OCP) [15]. The present method does not make it possible to identify
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Figure 3. (a) Illustration of the ‘melting experiment’: time dependence of the bond-angular order
parameter G� and system temperature T, obtained at κ̄ = 2. The sudden decay of G� below the
0.45 value [11]—marking the solid → liquid transition—occurs at �m = 384. The inset shows a
snapshot of particle positions recorded right before the temperature starts to increase. (b) �m as a
function of κ̄ as obtained from the ‘melting experiments’ (symbols) and the �∗ = 131 line. The
dashed line is the scaling relation of Vaulina et al [9] with �∗ = 133.

the theoretically predicted [10, 16] intermediate (so-called ‘hexatic’) phase between the solid
and liquid states of the plasma.

The figure also shows the � values calculated from (3), assuming �∗ = 131. We find an
excellent agreement with the simulation data, which shows that the first peak amplitude of the
PCF is nearly constant along the melting line of 2D Yukawa systems, regardless of the value
of κ̄ , as already pointed out before.

The energy E (per particle), the pressure P and the inverse compressibility L of the system
consist of the thermal part, the positive Hartree part and the negative correlational part. In
the following, we focus our attention on the correlational component of these thermodynamic
properties, which can be obtained from the PCF using the function h(r) = g(r) − 1.

βEc = β
n

2

∫
h(r)φ(r) dr = �

∫ ∞

0
h(r̄) e−κ̄ r̄dr̄

βPc = −β
n2

4

∫
r
∂φ(r)

∂r
h(r) dr = n�

2

∫ ∞

0
r̄

[
κ̄ +

1

r̄

]
e−κ̄ r̄h(r̄) dr̄ .

(5)

The data shown in figure 4(a) for Ec can be approximated as

βEc = �[b(κ̄) + c(κ̄)�∗−2/3
], with

b(κ̄) = b0 + b1κ̄ + b2κ̄
2 + b3κ̄

3 + b4κ̄
4 and

c(κ̄) = c0 + c1κ̄ + c2κ̄
2 + c3κ̄

3 + c4κ̄
4.

(6)

where b0 = −1.103, b1 = 0.505, b2 = −0.107, b3 = 0.006 86, b4 = 0.0005; and
c0 = 0.384, c1 = −0.036, c2 = −0.052, c3 = 0.0176, c4 = 0.001 65. Our data are in
an excellent agreement with the energy values recently calculated [3] and at κ = 0 with the
energy values given for the 2D OCP [3, 17].

The correlational part of the pressure is plotted in figure 4(b). Similarly to the energy,
the data are in an excellent agreement with those qouted in [3]. In the 5 � � � 120 and
0.5 � κ̄ � 3 intervals the correlational part of the pressure (Pc) can be fitted using the form

βPc = n�(b′
0 + b′

1κ̄), where b′
0 = −0.5638 and b′

1 = 0.09367. (7)
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Figure 4. (a) Correlation energy per particle of the 2D Yukawa liquid as a function of �, for
selected values of κ̄ . Lines: present results, symbols: [3]. (b) Correlational part of the pressure
(βPc/n) as a function of � for κ̄ = 0.5, 1, 2 and 3. The dashed line shows the behaviour of the
pure Coulomb OCP [3, 17].
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Figure 5. Correlational inverse compressibility LC as a function of � for different κ̄ values. Lines
show data based on the equation-of-state calculation [through (8)], symbols show points calculated
using the structure function S(k) [through (9)]. The dashed lines show the behaviour of pure
Coulombic OCP.

The correlational part of the inverse compressibility Lc is obtained from the pressure
through the relation Lc = β(∂Pc/∂n). Based on the fitting formula (7) Lc becomes

Lc = β
∂Pc

∂n
=

(
3

2
b′

0 + b′
1κ̄

)
� = (−0.8458 + 0.093 67κ̄)�. (8)

If, on the other hand, the static structure function S(k) is known, Lc can be determined
directly from S0 = S(k = 0) through the compressibility sum rule [5] as

Lc = 1

S0
− 2�

κ̄
− 1. (9)

The outcomes of the two independent calculations are compared in figure 5. A strong
coincidence of the two sets of results, especially for larger κ̄ values, verifies the consistency
of the computational procedure.

3. Dynamic properties

The spectra of the longitudinal and transverse current fluctuations, L(k̄, ω) and T (k̄, ω)

respectively, are displayed in the form of colour maps in figure 6, for the � = 360, κ̄ = 2 case.
The spectra of the longitudinal current fluctuations show that at small k̄ the mode frequency
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Figure 6. (a) Longitudinal L(k̄, ω) and (b) transverse T (k̄, ω) current fluctuations obtained at
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increases linearly with k̄, then within a relatively wide range of k̄ the mode frequency is near
to ω/ωp ≈ 0.45, where ωp =

√
2πQ2n/ma is the 2D nominal plasma frequency. The T (k̄, ω)

spectra (see figure 6(b)) are, as compared to the L(k̄, ω) spectra, broader for any k̄ value: the
fluctuations in the transverse currents are distributed over a rather broad frequency domain.

The dispersion curves for both modes of the 2D Yukawa liquid are displayed in figure 7,
together with κ̄ = 0 curves which represent a 2D Coulomb system [17]. With increasing κ̄

the mode frequencies rapidly diminish. In the k → 0 limit both modes exhibit an acoustic
behaviour. All the described behaviour is in an excellent agreement with theoretical predictions
based on the quasilocalized charge approximation [5].
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